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SOLUTION TO THE ONE-DIMENSIONAL CLUSTER MODEL
A.V.Bakaev*, V.I.Kabanovich*

A one-dimensional lattice gas model is considered, in which interact
only particles inside a cluster. Exact recursion relations for the partition
function are obtained and solved in the thermodynamic limit. The cluster
size distribution function is determined. Conditions for a thermodynamic
size cluster to coexist with vapor are found.

The investigation has been performed at the Bogoliubov Laboratory of
Theoretical Physics, JINR.
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Paccmotpera ofioMepHas Moaens PELIETOMHOMO ra3a, B KOTOPOiH BIaMMO-
AEACTBYIOT TONLKO YACTHUBE BHYTPH OAHOMO knactepa. Monyuens Tounbie pe-
KYPCHBHBIE COOTHOWICHHR AN CTATUCTHYECKOHW CyMMBI, KOTOpbie PElieHb B
TEPMOAMHAMHUECKOM Npenene. Onpenenena GyHxLUS PACNPEACACHHS Pa3Me-
pos xnactepa. HalneHs! ycnosHs, NnpM XOTOPsIX KNACTEP TEPMOAMHAMHYECKO-
1O PA3MEPa COCYULECTBYET C NAPOM.

Pabota soimosnena 8 Jlaoparopun reopervueckoit duanxn um. H.H.Bo-
romobosa OUSIU.

Let L be a 1D lattice (ring) of V sites each of which either is vacant
or contains a particle. The total number of particles is equal to N. By a
cluster G, we mean a set of k particles on £ which constitute a chain of
nearest neighbour on L. Let the energy of an arbitrary particle configu-
ration be given by
H=Y, ek) n(k), 1)

k
where g(k) is the energy of a G and n(k) is the number of such clusters.

This model belongs to the class of Polymer Models (see [1]), the one in
which we fix only the total number of particles and not the numbers of
clusters of each type. The examples of such models include, in parti-
cular, the nearest-neighbour interaction 1D lattice gas, and the 1D
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version of a hole-induced frustration spin model, in which the spin vari-
ables can be summed out leading to an effective hole Hamiltonian of the
form (1) (see [2]).

It is well known that lattice gas type models rapidly decaying pair
interactions cannot have long-range order at non-zero temperatures;
the models with the potential = 1/x2 exhibit a first order transition in
temperature (see [3], and [4], [5]), and for stronger interactions, for
instance for the Coulomb potential [6], which is < x in one dimension,
classical particles condense, or crystallize, at all temperatures. The
simple cluster model (1) considered in this paper seems to have to do
with both the cases. In particular, for some cluster energies condensa-
tion arises even in one dimension.

The partition function of the system with the interaction (1), laid on
the 1D lattice £ with free boundary conditions, is given by

Z(V,N)= Y C(V,N, (nk)}) 6 [N -3, kn(k)J exp(- B9, (2
{n(k)} k=1

where C(V, N, {n(k)}) is the number of particle configurations which
form a given set {n(k)} of the numbers of clusters:

C(V,N, {n(k))) = ﬂ:——NLIX , M0)=V-N+1-) nk).
IT ney k=1
k=0

Let us mention that the partition function of the noninteracting
Boltzmann gas of Ny =V-N+1 particles with the discreet spectrum

eB(k)=e(k), k= 1,...,£B(0)=0, differs from (2) only by the &-factor

o0

3)

SWN - Z kn(k)) which can be considered as some artificial non-ideality
k=1 .
of the Boltzmann gas. :
Summing the contributions due to configurations in which the first

site of the chain belongs to Gk =1,...,N, or is empty (k = 0), we obtain
the following recuner}se:

ZV,N)=3, v()ZV-k-1,N-k), V>N20,

= @

Z,(V, V=1V=0.
where v(k) = exp(- Be(k)), k = 1,2,..., N, and we put, formally, v(0) = 1.
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For L with periodic boundary conditions we have:
N
ZV,N)=3 *k+Dvok)Z(V-k-2,N-k), V2N+2. (5)
k=0
Let c(k) be the average number of clusters G, c(k) = (n(k)). It is not hard
to prove that

ZlV—k—Z,N—k)

c(k) = Vu(k) Zp(V, N , k=1,.,N. (6)
N
Using the normalization condition N = z kc(k), we get
N k=1
2. ko(k) Z(V-k-2,N-k)
A=0 N
2 k+Duk)ZV-k-2,N-b)

k=0
Since Eq. (7) holds for any (V, N), for the sequence S()) =ZI(V—N -

=2+),)),j=0,...,N, where V and N are fixed, from Eq. (7) we get the
following recurrence:
J

SG)=3 ((V—N) ;’% . 1) v(k)SG—k), S(©)=1. ®)

k=1 ,
Thus, to compute Zp(V, N) and c(k), k=1, 2,..., N, it will suffice to use
the recurrence (8) only N times, instead of applying Eq. (4) more than
N?/2 times.

Suppose that the limit v = lim (v(k))l/ * exists. For any positive r, the
k0

quantities c(k) are invariant with respect to the transformation
vk) > v ®) =0k, ZAV,N) 5 ZV, M) =ZV, Ny (9)

Thus, choosing r = v™! we reduce the model to the case v = 1.

Let us start from the case in which only a number of the first terms
contribute to the sums in Eq. (7). Then, for sufficiently large (V, N), we
have

Z/(V—k—2,N—k)
Zf(V-— 2,N)

= exp (kB —p)) = o, (10)
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where p and p are the pressure and chemical potential in the limit
V — e, N/V =p, respectively. If a < 1/v =1, then the contributions to
the sums in Eq. (7) decrease exponentially, and in the thermodynamic
limit the density p as a function of the parameter « is given by

Z ku(k) ot

Y k+1)uk)o*
=0
and the average numbers of clusters decrease exponentially,

wpa’l (12)

c()=-3

Y k+ vk ot
k=0
Denoting Ng=V-N, we can rewrite (12) in the form:

j .
€0__vje- (13)

Y vik) ot
=0

which gives exactly the occupation numbers of the noninteracting Boltz-
mann gas with the.chemical potential pg=Ina.

The function p(a) (11) is a monotone increasing function of o, and

p(0) = 0. If the series z ku(k) diverges, then p(1)=1 and for any
k=0

p € (0, 1) Eq. (11) is the equation of state for the cluster model. If, con-

versely, this series converges, then P,=p(1)< 1, and at p>p, Eq. (11)

has no solution. Thus we have obtained the condition under which the
delta-factor in (2) makes this model essentially different from the non-
interacting Boltzmann gas.

Numerical calculations by the recurrence (8) in the case p, <1
demonstrate that S(j) has a maximum at j=N P x(p,) (V- N), which
gets sharper with the increase of (V - N) (the coefficient x(p,) is inde-
pendent of (V, N).

In order to obtain the asymptotical solution to the model with
P > p,, we approximate S()) in the vicinity of its maximum by the follow-

ing expression:
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12
S(Ng +)= S(Ng) exp [— _2DJ’ l<< Ng. (14)
The quantity
: k 1 - k)
A0=X (V- g - 1otk exp SR s

is the difference between the Lh.s. and r.h.s. of Eq.8)atj=N et l, neg-
lecting the contributions due to % close to N ~ Choosing the optimal
values of N p and D from the conditions A(0) = 0 and A’(0) =0, we are led
to the equations:

0" 0200 - (01)2
Ne=(W-Ny~: D=(V-N—"——r—
N‘ 22
y=0, (N, D) EEO k “v(k) exp (- EJ (16)

Ifp_ < p <1, then, using Eq. (11) at & = 1 to find the limit of the quantity
o,/6,, we get the asymptotics of the solution to Eq. (16):

N 7}
=lim —£-o 1P . 3D _
pg_‘}lm V—pcl—pc’ Jlm V—O. 17

The function (14) is the asymptotically exact solution to Eq. (8) for
{1l < L(V), where L(V) is a function of order of magnitude o(V). Now,
using (14), we find the asymptotically exact solution to Eq. (8):

_ Wp'V-N )
SO'V) ~N2mDSIN) (V-N) ———%,  p’e (p_.p] (18)

Y wk)
k=0

(we assume, for simplicity, that v(k) is sufficiently smooth at large k).
Let p()) be the partial densities. According to (6),

PV(I) Ej%(/[l= 5 V() S(N_.I) . (19)
2 (k+ D) vk) SV - k)

= .
Substituting (14), (17), and (18) into (19), we get the following asymp-
totics for small clusters and macro-clusters, respectively: :
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N . (20)
Y 1. () ; _
PV~ = » J<N-N,

Y, kvk)
k=0

2 (21)

exp (— '2%) I<< N—Ng.

N-N
1
N-N+l)~—%
PN )
Clearly, the total density for small clusters is equal to p » (17), that is
N e andN-N  are the average numbers of particles in the vapor and in

the condensate, respectively. The quantity VD describes the fluctuations
of these quantities. Taking the sum o c(k) over macro-clusters
k=N-N g We see that the condensate consists of exactly one macro-

cluster. The density of the vapor in its volume V- N + N A equals p , that
is for p > P, the vapor is always a critical gas and all «extra»-particles

are condenced into the macro-cluster.
As an example, let us consider the model e(k) = In(k + 1). At high
temperatures 0 < < p . = 2 the system is gaseous at any density. At low

temperatures f > B_the system is gaseous if p < p (B), where
[+ [+

p=1-7B- -3 4 (22)
k=1
and at p>p . &n equilibrium coexistence of critical vapor and conden-
sate occurs,
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